ROADMAP MENJADI MACHINE LEARNING CYBER SECURITY ENGINEER

PHASE 1 — FUNDAMENTAL SKILL (3–6 bulan)

1️ Dasar Pemrograman & Data Science

Tujuan: memahami coding + data preprocessing
Skill Wajib:

  • Python (NumPy, Pandas)
  • Exploratory Data Analysis (EDA)
  • Visualization (Matplotlib, Seaborn)
  • Basic statistics

Target Output:
✔ Python automation untuk parsing log
✔ Data cleaning untuk log keamanan (syslog, firewall log, PLC logs)

2️ Fundamental Cyber Security

Tujuan: memahami domain ancaman
Materi Penting:

  • CIA Triad
  • Network Security, Firewall, IDS/IPS
  • Malware, phishing, brute force, DDoS
  • Basic SIEM (ELK, Splunk)

Target Output:
✔ Mampu membaca traffic Wireshark
✔ Paham log: auth.log, netflow, Modbus traffic

PHASE 2 — ML CORE SKILLS (3–6 bulan)

3️ Machine Learning Untuk Keamanan

Materi:

  • Supervised: Decision Tree, Random Forest, SVM, XGBoost
  • Unsupervised: Clustering, PCA, Isolation Forest
  • Evaluation metrics keamanan:
    • Precision/Recall
    • ROC-AUC
    • False Positive Rate

Target Output:
✔ Model deteksi brute force login
✔ Model deteksi DDoS (dataset CIC-IDS, UNSW-NB15)

4️ Deep Learning for Cybersecurity

Skill:

  • ANN
  • LSTM untuk anomaly detection
  • CNN untuk malware classification (binary images)
  • Autoencoder untuk deteksi intrusi

Target Output:
✔ Autoencoder untuk deteksi anomali traffic
✔ LSTM untuk memprediksi serangan ICS/IIoT

PHASE 3 — CYBERSECURITY SPECIALIZATION (6–12 bulan)

5️ Network Traffic Analysis + AI

Belajar:

  • Netflow
  • PCAP preprocessing
  • Feature extraction otomatis (CICFlowMeter)

Project:
✔ “AI-Based Intrusion Detection System for ICS/SCADA”
✔ “Anomaly Detection di PLC Traffic (Modbus/TCP)”

6️ ML for ICS/SCADA Security (Khusus Industri)

Fokus:

  • Protocol: Modbus, DNP3, OPC-UA, Profinet
  • ICS threat (unauthorized write, parameter tampering)
  • Creating digital twins for anomaly detection
  • Hardening PLC network

Project:
✔ Deteksi anomali Modbus function code
✔ ML mendeteksi perubahan parameter PLC (speed, level, temp)
✔ IDS khusus IIoT berbasis ESP32 + ML

7️ Adversarial Machine Learning

Materi:

  • Evasion attack (mengelabui model IDS)
  • Poisoning attack (meracuni dataset)
  • Model robustness
  • AI malware generator vs AI malware detector

Project:
✔ Sistem IDS tahan serangan adversarial
✔ Detect fake IoT traffic generated by GAN

PHASE 4 — SECURITY ENGINEERING + DEPLOYMENT

8️ MLOps + Deployment for Security

Skill:

  • Docker, Kubernetes
  • REST API (FastAPI)
  • Model optimization
  • Edge AI (Jetson Nano, Raspberry Pi, ESP32-S3)

Project:
✔ Deploy ML IDS ke Raspberry Pi sebagai IoT Gateway
✔ Deteksi serangan Modbus real-time

9️ SIEM + SOC Automation with AI

Belajar:

  • ELK untuk log ingestion
  • Correlation rules + ML engine
  • SOAR automation

Project:
✔ AI yang otomatis mengirim alert ke Telegram
✔ AI-based anomaly scoring in SIEM dashboard

PHASE 5 — ADVANCED (6–12 bulan)

🔟 Blockchain for Cyber Security (opsional tapi kuat)

  • IoT identity management
  • Immutable logging
  • Smart contract untuk “security policy enforcement”

Project:
✔ Ethereum / Polygon untuk secure IoT device identity
✔ Blockchain untuk log yang tidak bisa dihapus (tamper-proof)

🎯 ALUR ROADMAP VISUAL

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10

Fundamental → ML → Cybersecurity → ICS → Deployment → Blockchain

🧪 PROJECT CAPSTONE (Wajib untuk Portofolio)

1️ AI-Based IDS for IIoT (Modbus/RTU & TCP)

  • Menggunakan LSTM/Autoencoder
  • Traffic real Modbus PLC
  • Deploy di Raspberry Pi

2️ Anomaly Detection untuk PLC/SCADA

  • Monitoring: level, flow, temp, pressure
  • Detect out-of-bound changes

3️ AI-Enabled SOC Dashboard

  • Menghubungkan SIEM
  • ML classifier: brute force login / malware

4️ Blockchain Identity for IoT Devices

 

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *